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The problem considered is that of a plane plastic wave which 1is incident nor-
mally on a plane boundary which separates two elastic-plastic half-spaces.
The problem formulated in this way is spatially one-dimensional, and a uni-
axial stress-strain curve suffices for the description of the phenomena. In
this article, only essumptions of a general nature are made about the proper-
ties of the stress - strain curve. The reflected and refracted waves, the
reflection coefficlent and its relation to the stress-strain curve are stud-
led.

Real medla in which the propagation of large disturbances must be studied
(soils, structural elements, etc.) are almost always inhomogeneous. This
inhomogenelty may elther be characterized by a continuous distribution or
appear in form of more or less sharp interfaces. In the latter cases it is
condidered that different media are in contact along some bounding surface.
When a wave is incident on such a sur-
face, reflection and refraction take
I place., For plastic waves the study of
é; | these phenomena 1s in its initial stage
of development. It is natural that the
study begin with the case of a plane wave
incident normally on a plane interface
between two media. A particular problem
with a plecewise linear stress-strain
curve is considered in [1].

It 1s assumed that the initial part
of the (compression) stress-strain curve,
corresponding to elastic straining, is
a straight line (00 in Pig.l). On this
segment loading and unloading take place
along the same curve. In the remainder
of the stress-strain curve for loading
it i1s assumed only that the branch OFED
is elther everywhere concave upward or
1s divided by the point x 1into two
parts: (F 1s convex upward and Zp 1is
concave. The curve OCZBD represents a
monotonously increasing function. As for
unloading, it is assumed that tn the
right of the point ¢ where the strain-
Fig. 1 ing becomes inelastic, unloading occurs
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at constant density (on a straight line parallel to the axis of ordinates).
Reloading is described by motion of a point upward along BB, up to the point
B and, for further loading, along the branch 5p . Each of the half-spaces
in contact 1s described by a simllar stress-strain curve; the two curves
differ only quantitatively. As in [2], it is assumed that the incident wave
is caused by a shock loading which decreases monotonously from its initial
value {typical of the properties of a wave due to an explosion). The inci-
dent wave has a shock front which propagates into undisturbed medium, the
particles behind the shock front undergoing unloading. This type of incident
wave 1s possible in two cases:

1. The incident wave 1s elastlic; a point on the segment 0C corre-
sponds to the stress at the shock front.

2. The incldent wave is plastic; a point on the segment D,D(o,> o*)
corresponds to the stress at the shock front. Points on a segment parallel
to the axis of ordinates correspond to stresses at particles behind the front.

Under certain conditions the character of the incident wave which has s
been described leads to simllar reflected and refracted (transmitted) waves.
Here the following cases are possible:

TABLE 1
Incident wave Reflected wave Refracted wave
1 Plastic Plastic Plastic
2 " " Elastic
3 Elastic " Plastic
4 " " Elastic
5 " Elastic Plastlc
6 n " Elastic

Case 6 1s well kmown in the theory of elasticity. In this paper only
cases 1 and 2 are considered., Cases 3, 4 and 5 may be examined similarly.
The problem consists of giving quantitative descriptions of the lncident,
reflected and refracted waves (and, in particular, of finding coefficients
of reflection and refraction) and also of the conditions for which the spe-
cial cases mentloned above are realized.

1. In the following we shall denote the stress ¢, and the strain ¢, by
¢ and ¢ , respectively. Compressive stresses and compressive strains will
be considered positive. Let the stress-strailn curve for the half-space in
which the incident wave propagetes be specified by the relation

o = o°f (e), o >0
We shall examine the problem in the lLagrangian coordinates » , ¢ , s0O
that z(h ) = h+ u(h 1)
where 1y 1s the displacement and x is the Eulerian coordinate. In the
plane » = 0 an external loading ¢ = 0,(¢) 1s given, with g, (0) = 0, == 0;
the function co(t) is monotonously decreasing. If e, is sufficlently

large, the particles behind the shock front will undergo plastic unloading
at constant density. In this case we have Equatlions

s ov 9z _ pg 1.1

o TP =0, o = 5 (k) (1.1)
where p, is the initial density, p is the density of particles behind the
front of the incident wave (p > p,) . From (1.1) we obtain
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h

z(h, t) = Sp"*zf]*)' Faolt), ok t)=2 = () (1.2)
’ G(h, t) = ——poxo” (t)h+60 (t) (1.3)

At the shock front (starred quantities will refer to values at the shock

front) vy = &y, Gy = PoEyhiy? (1.4)
Eliminating vy and oy from (1.3) and (1.4) after an integration, we
obtaln t
Eghyhy = g""_‘y = F(t) (1.5)

0
Comparing the second of Equations (1.%) with the stress-strain law, we

have 5° f (8)
12 ___ .0 2 2 *
Oe€yhy? = 6°F (e,), Ay or e
If the point representing the stress at the shock front lles on the seg-
ment D,D (Fig.l), then f(s*)

Flea) >

(1.6)

This means that d f(s)___ef(e)——f(s):>'0
de e et =
i.e, that the function f(e)/c¢ 1is monotonously increasing. Therefore,
Equation (1.6) has a unique solution for e« , and there exists a monoton-
ously increasing function o(es)
* =P (h*,)
which is the solution of Equation (1.6).

— ] As a result, we obtaln a first-order
differential equation to determine the

| -7 . Lagrangian coordinate hny(¢) of the
7 v i front s, (1) dt -
Py A *(P(h g : Po (1'/)

0
¢ : which 1s to be solved with the initial
Fig. 2 condition n,(0) = O .

2. Let us examine the reflected wave, assuming that 1t hgs a shock front
with an associated stress that is increased as a result of the reflection.
The condition for this to occur is that the second medium be "stiffer" than
the first. The preclse meaning of this requirement will be made clear later:
We shall indicate quantities which refer to the reflected wave by the sub-
sceript 1. The reflected wave is constructed in the same way as in [2] in
which a special form of the stress-straln law was assumed.

To avoid repetition we shall not enlarge on the details here, referring
the reader to the reference cited.

The location of the front at some time after the reflection is shown in
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Fig.2. Here h, denotes the distance from the .initial plane to the inter-
face, hy 18 the distance to the front of the incident wave if this wave
continued to propagate without encountering the interface. For the reflected
wave, we have, just as for the incident wave,

51 (h, t) == — povll (t) (h — h()) + 51 (h(), t)

I

Podn 9 ' 2 1)

m(h, 8) —\ Sy T (0, vl ) = T =y (2) 2.1)

At the reflected shock front, (see [2]) (2.2)
Vi — 0 = — [81(R1y) — € (hug)] Ry, Gy — G1g = — Po V14 (£) -— 0 (£)] Py

where o, (k) 13 the stress which existed at the particle with the coordinate
» when the incident wave passed 1it.

For stress at the shock front, the stress-strain law has the form
Siy = Gof [E‘l(hl*)] (2.3)

Eliminating ¢, 4 and L from Equations (2.2) and (2.3), we obtain the
relatio?
i/ {8 () 1L =B (e () 1y [ & (v By )T} *1—37[8(_,1%}”‘
A 1)\ A
<3_;1_ ;*(E)L) (2.4)
Since the particle veloclties in the reflected wave do not depend on the
coordinate, they are the same at the shock front as at the interface sepa-
rating the media. Denoting the velocity of the polnts of the interface by
v(t) , we have v,4(t) = V(¢). Equation (2.4) contains the unkmown function
ma(t) and v(¢) . This equation is a nonlinear, first-order differentlal
equation in n,,(¢) (the generalization of Equation (3.9) of [2]. Assuming
that

8] =B e ()| < 1
which 1s prompted by physical considerations, we can replace Equation (2.4)
by an approximate one found by expandlng the function sle(n,)— 8] into a
power series and retalning two terms. We then obtain Equation
dh _ — dhyy (3'5)

(e (1 /e () (e (D)™

We note that in this approximation the dependence on V(t) has dropped

out of the equation, which can be explained by the comparatively small effect

of the velocity of the points of the interface on the propagation of the
shock front of the reflected wave. We shall investigate the case

M0 <ep(e),  7iE@N<fleul <l

This means that the reflected wave front 1s propagated at a higher velo-
city than the ( fictitious ) incident wave front. In particular, this is also
valid at the instant the reflection begins (Ax= k4= h,) . It should be
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remarked that we have denoted by "reflected wave" all motions which appear
as a result of a reflection, not the part which is added on to the incildent
wave as 1s usual in the linear theory of elastlicity and in acoustics.

s+ 3, In order to solve the problem completely, 1t 1s necessary to formulate
g second equation containing the unknown function w(¢). To do this we must
consider the wave which passes into the second medium (the refracted wave).
We shall examine the case in which the refracted wave 1s elastic (case 2).

We then have

uy (B, 1) = F (ast — b+ hy), 0y (b, 1) = a;2poF" (ast — h =+ hy)

vy (B, t) = a F’ (agt — b 4 hy) (3.1)
On the plane of contact the conditions of :ontinuivy must be satlisfied.
vy () = vy (B £) =V (1), 0y (hgy t) = G (ho, 1) (3.2)

These two conditions and the second melation of (2.2) enable us to elimi-

nate the function F and the stress o,, ; We obtain the equation for 1(t)

0 (Bry — ko) V' (1) — (apy — Pohu )V (1) = Povhy,” — On (3.3)

This is a linear, first-order differential equation. At the instant of
reflection the coefficient p,(h,,—h,) of the derivative goes to zero. This
causes the general solution of the homogeneous equation to be unbounded., For
if we take the instant when the wave strikes the interface as ¢ = 0 , then
we have for small ¢ > O

hl*-—h():—alt“{—...
— PoaytV (£) — (agpy + a@p) V () = — pov (0) a3 —0p + ..
We shall seek a solution in the form
V(t)=Cte+Vy+ ... (3.4)

where (, V, and o are constants and the first term on the right-hand side
is the general solutlon of the homogeneous equation. We obtain the values
aspy po? (0) a1 4+ o3
a=—1-2 gy, _wOate (3.5)
for ¢« and y, .

Since o < 0 , the general solution 18 unbounded as ¢ - 0 , and the con-
dition of boundedness of the solution as ¢ - 0 must be imposed as the ini-
tlal condition in the solution of (3.3). The constant v, 1s the initilal
value of the velocity of the points of the interface, which is expressed in
terms of the as yet unknown initial veloclty a, of the reflected wave. (If
the wave 1s 1ncident on an obstacle, the 1nitial value of velocity of the
obstacle 18 equal to zero).

4, Let us investigate 1n greater detail the special case in which the
incident wave has the form of a step. This case 1s all the more interesting
because 1t describes asymptotically for the initial stages the phenomenon of
reflection for an incident shock wave a general form. If the incident wave
has the form of a step the analysis of the situation i1s simplified considér-
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ably since the parameters of the wave behind the front are constant. Thus,
in the incident wave, behlnd the front

e(h) =2, v() =19, 0,=0,(0) =pwa a>0 5~ () =a

Let us try to satisfy all the conditions of the problem by assuming that
the parameters are also constant in both the reflected and refracted waves

ey (B) =€, v () =uv, h, (f)=— a, a >0
fyy — hy = — ayt

gy (B t) = &, vy (R, 1) = wy, o' () = a3, a; >0

Equation (2.4) then assumes the form
14
Pleo(14B5) | =rEa{t+ B2},  B=1—1 =const (41)

In order to solve thls equation approximately, we set aa/a1 =0
We may then rewrite Equation (4.1) as
(_‘1_1_> 1 (&g +2g5) — 1 (8g)

a of (&)
The expansion of the right-hand side in powers of ge, permits us to
represent the relation between g, /a and g in the following parametric

form: (4.2)
o 1" (e0) & 1" (8o) &% R R i - 1 (30)30 . '
st it o p=ofEr histe s

In Equations (%.2) the quantity ¢ plays the role of a parameter. The
retention of Just the first term of the series yields the same result as

Equation (2.5), namely o )
4 2g) )/c 4.3
a (7 (20) / & (4. )
We now return to Equation (3.4). For a bounded solution in the form of
a constant we obtain

S 1 Pe¥elt oo (2 - a1
Vo= apz + @py | agpz + Poal) (4.4)
This value of the interface velocity allows us to compute the stress at
interface in the reflected wave
povpa (1 + a1/ a) (4‘5)
1 -+ pea1/ paas
According to condition (3.2), the stress in the refracted wave has the
same value.

65 (ho, t) = 20203 =

It is useful to introduce the concept of the reflection coefficient (and
the refraction coefficient), where we mean by this the ratlo of the stress
in the reflected (rerraéted) wave to the stress in the incident wave. For
a step wave this ratio does not depend on time; for an arbitrary wave it
will be referred to the instant of incidence (¢ = 0) and should be computed
by the same formula as for the step wave (assuming that the incident wave is
a shock wave). We denote the reflection (refraction) coefficlent by & .
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Then & — bt 1+a/a
— = (4.6)
Gy, 1 4 poa1/ paa
Thls equation shows that the reflection coefficient depends significantly
on the ratio al/h . Likewise, ¥ depends on the ratic a,/a . In particu-
lar, if the second medium is infinitely stiff
(ag= =), the phenomenon reduces to the reflection
M from an immovable wall and the reflection coeffi-
cient in thls case assumes the value
K=1+4aqa,/a (4.7)
The ratio g4,/a 18 determined from the strese-

strain curve according to Equation (4.3) and can
be interpreted geometrically. As a matter of

é

a & . fact, this ratio can be expressed as
I3
) a f (&) tan o
Fig. — = —_— = =
g 3 a fleo)/ 8 tan O

where the angles o and a, are shown in Fig.3.

The dependence of the reflection coefficient on the intensity of the
incident wave 1s also determined by the stress-strain law. Ler us gilve some

examples.
1. Let the part of the stress-strain curve under consideration be expres'-

sed analytically by the power relation f(e) = ¢*, Then
@y/a=Vn, K=1+4+Vn

In this case the reflection coefficlent does not depend on the intensity
of the incident wave, as was noted in [2].

2. A different result is obtained for the case when for 4/B < ¢

B \"
f(ey=Be— A4, B>0, A>0, K=1+ (t—f———A—/_e)

As we see, the reflectlon coefflclent decreases with increasing intensity
of the incident wave.

3. Finelly, let

fle)=

0leLe®, m>0, p>0

"
e —eP’
Then P s
K=1+ (m)

and the reflection coefflclent increases with increasing intensity of the
incident wave.

In conclusion, the conditions for the realization of the case of reflec-
tion which has been considered should be noted. Besides the condition that
the incident disturbarice be & shock wave, i1t 1s also necessary that the re-
fracted wave in the elastic range, i.e. that the stress in the second medium
at the interface t+a/a

Pobo T pem | pasa
be less than the corresponding elastic limit, and that the reflected wave be
stronger than the incident, 1.e. X¥> 1 . This last condition leads to the
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inequality 4,p, > gp, , which means that. the acoustic impedence of the
elastic medium must be greater than the "effective” acoustic impedence of
the first medium.

5. We now proceed to the case in which the refracted wave 1s plastic
(case 1). Equation (2.%) remains valid in this case because the propertiles
of the second medium enter Into it only through the value of the velocity
v(t) of the points of the interface, and this velocity occurs in Equation
(2.4) as an unknown quantity. In contrast to the preceding, Equation (3.3)
does undergo a change.

For the refracted wave, just as for the incident wave in Section 1, we

btal .
obtain Oy (By 1) = — pyv," (B — ha) -+ 0, (b, 1) (5.1)
Por the reflected wave, we have
oy (hy t) = — pov;” (b — ko) - 0, (hy, 1) (5.2)

We then obtain the values of these stresses at the reflected and refracted
shock fronts, respectively

Oy (Boys 1) = — P30y (Byy — hg) -+ Oy (Bgy &) = PaVayhg, (9.3)
O1(hyyot) = — 040 (Byy — ho) + 01(Bg,8) = Py Pag’ + Ob — Povhy, (5.4)
On the intreface between the medis (h = h,) , the boundary conditions
vy (Bgy t) = v, (hg, 1), 0y (hyy t) = 0, (B, D (5.9)
must hold,

Since the functions v, and v, do not depend upon % , the first condi-
tion of (5 5) becomes the relation

v () = v, () = V () (5.6)
where V(t) 18 the velocity of the particles of the interface.

Taking (5.6) and {5.5) into account, and subtracting (5.4) from (5.3), we
obtain the following differential equation for ¥(s¢): (5.7)
[Py (Boy — ho) — Po (yy — RV (8) + (pofy” — Poly) V (1) =00 — povhy,’

This equation appears in the new problem in place of Equation (3.3).

For smell positive values of time, we have

Big — by = —ast + ... hoy — by = agt + . ..
and, under this condition, Equation (5.7) may be rewritten as
(P2as + Poay) tV' (1) + (psas + P0ay) V (t) = 3p — povhy,
The corresonding homogeneous equation has the general soluticn v{t) = ot~1,

The requirement of boundedness of the solutlon of Equation (5.7) in the vici-
nity of ¢ » O then forces us to set ¢ = 0 .

In order to solve the problem one more equation must be formulated. At
the front of the refracted wave which propagates, as assumed, into an undis-
turbed medium, the conditions
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’”
Vo = Eaghan’y Tox = PsBaylly
hold . From thls we {lnd G2y
€o, = C
2% P‘AhZ* 3

or, taking account of the stress-straln relation in the second medium
0y = 05°f, (8y), we finally obtain o ean)
' 62" fal(€ay
hg* 2 == '5;“ —82‘:—* (5.8)
Replacing egx 1n accordance with the relation
Yoy Y_(t)
hay’ by’

82* =

we obtain Equation
fa (V [ hay') pahe,’?
V /hz*, - Gzc (5.9)
If the function which is the inverse of s'ﬂf’(s)]2== 7, 18 denoted by
¢ = w{n), Equation (5.9) can be replaced by the relation

= (25 by ) (5.10)

52°

The problem formulated at the beginning of Section 5 then reduces to the
golution of three simultaneous equatiocns (2.4}, (5.7) and (5.9) or (5.10).
These equations contain unknown functions of time M, hgs 8nd V¥ , For a
general stress-strain law it 1s necessary to resort to numerical solution
preceded by a qualitatlive investigation of the equations. Equations (2.4)
can, of course, be replaced here also by the approximation of Equation (2.5).

We shall dwell in some detsll on the speclial case in which the incident
wave has the form of a step. In this case the reflected and refracted waves

will also have that same shape. Retaining the notation of Sectlon 4, we
obtain three equations to find the three unimown constants e, , a,, and ,

a a1 povofa+a1)  fa(Volag) _ paas?
}‘[ao (1 + B-;;;)]:]‘(eo)(i +8 T) » Vo= aipo + azpg ’ Volaz =~ 62

where

(5.11)

VO ( Go )1/2 (f (30) )x/s ( 60 )1/1
B=t—r,  a=(4 o) vo={— Veof (o) (5.12)
The filrst of Equatlons (5.11) may be replaced by the simpler approximate
one, Equation (4.3). We obtain the previous Formula (%.6) for the reflection
coefficient, but now the constant g, is not given beforehand. In order to
determine this constant we use the second of Equations (5.11). We then ob-

taln the relation (@ -+ an)
povlata) (e
a3 (poay - pagz) — T2 ( 5° a23) (5.13)

the left-hand side of which decreases monotonously with a,, while the right-~
hand side increases monotonously. Therefore, Equation (5.13) has a unique
solution which determines the velocity of the refracted wave front.

We shall now explain how the plastic properties of the medium affect the
reflection. In order to do this we shall compare a reflection from an
ldeally, elastic medium, in which the velocity of longitudinal waves 1is
{(0,°/ p2)'", with a reflection from a corresponding plastic medium in which
the phenomena proceed as prescribed under case 1 in Table 1. Here the stres-

8es In the shoek wave are described by a portion of the stress-strain curve
for which f2 (2)

e =1t v
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where t(e) is a positive function. Therefore,

T2 (V [ hys) 1% s
P2 -
DUy () = 2oy (=)
Vi +w(h2*) Bonde b

Equation (4.6) shows that in passing from an ideally elastic medium %o a
plastic one in which reflection occurs as in case 1, the reflection coeffi-

cient increases., Finally it is necessary to show that c¢ase 1 can be realized,
It dées apply 1if the following three inequalities hold:

o, > 0%, oy > 05%, K>1
where o* 1s the stress corresponding to the point D, (Fig.l), o,* 18 the

corresi)onding stress for the second medium. Written out in detail for step
waves (and this is sufficient), these inequalities have the form

Povea > 6*, paVoas = porgak > ay¥, Poa < Paay

The first inequality requires that the incident wave be strong enough,
which may always be assumed. The second inequality, when taken together with
the third, reduces to the same thing. It remains to show that the third
inequality can always be satisfied for any strong incident wave. In proving
this statement,we shall limit ourselves to the casg in which the curve of
the function f.(e) has a vertical asymptote e¢= ¢*and that p,>p, . Then the’
curve of 2he function ¢ = py(n) has the horizontal asymptote € = ¢*, with
0 < gg< €*.

Equation (5.13) can be rewritten as

Pod 1 Poa1 po@ P2 _ P2
p2ds + pod1 pagz Po (Pa( T a2® (5.14)

Let us. assume that there is a sufficlently strong incident wave for which
Ped => P3Gy Then the left~hand side of the equation turns out to be greater
han unity, while the right-hand side can be approximated by the number
e¢%/e, and can be made smaller than unity.

These considerations show that case 1 is definitely the actual one for a
sufficiently intense incident wave.
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